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300
/’

310 Negotiate inter-processor
communication keys to establish
secure communication channel

320 Exchange processor identity keys
using secure communication channel

330 Designate master processor

340 Generate platform identity key

350 Receive identifier and public key of
certification service

360 Synchronize security properties
including platform identity key and
identifier of certification authority

370 Encrypt and store key blob
comprising platform identity key and
inter-processor communication keys

380 Create platform manifest

comprising platform identity key and
processor identity keys

390 Transmit platform manifest to
certification service

US 9,448,950 B2

FIG. 3
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400
/—

410 Retrieve key blob
from non-volatile memory

420 Decrypt platform identity key and
inter-processor communication keys

430 Establish secure channels with
other processors using inter-processor
communication keys

440 Ascertain that all processors are
present and no new processor has
been added to platform

FIG. 4
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1
USING AUTHENTICATED MANIFESTS TO
ENABLE EXTERNAL CERTIFICATION OF
MULTI-PROCESSOR PLATFORMS

TECHNICAL FIELD

The present disclosure is generally related to computer
systems, and is specifically related to systems and method
for enabling external certification of multi-processor plat-
forms.

BACKGROUND

Securing execution and integrity of applications and data
within a computer system is of growing importance. Various
known security techniques fail to adequately secure appli-
cations and data in a flexible but reliable manner.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of examples,
and not by way of limitation, and may be more fully
understood with references to the following detailed descrip-
tion when considered in connection with the figures, in
which:

FIG. 1 depicts a high-level component diagram of an
example processing system, in accordance with one or more
aspects of the present disclosure;

FIG. 2 schematically illustrates an example method for
producing a platform manifest by a multi-processor plat-
form, in accordance with one or more aspects of the present
disclosure;

FIG. 3 depicts a flow diagram of an example method for
producing a platform manifest by a multi-processor plat-
form, in accordance with one or more aspects of the present
disclosure;

FIG. 4 depicts a flow diagram of an example method for
processor cross-authentication in a multi-processor platform
upon second and subsequent platform boots, in accordance
with one or more aspects of the present disclosure;

FIG. 5 depicts a high-level component diagram of an
example computer system, in accordance with one or more
aspects of the present disclosure;

FIG. 6 depicts a block diagram of a processor, in accor-
dance with one or more aspects of the present disclosure;

FIGS. 7a-7b schematically illustrates elements of a pro-
cessor micro-architecture, in accordance with one or more
aspects of the present disclosure;

FIG. 8 depicts a block diagram of an example computer
system, in accordance with one or more aspects of the
present disclosure;

FIG. 9 depicts a block diagram of an example system on
a chip (SoC), in accordance with one or more aspects of the
present disclosure;

FIG. 10 depicts a block diagram of an example computer
system, in accordance with one or more aspects of the
present disclosure; and

FIG. 11 depicts a block diagram of an example system on
a chip (SoC), in accordance with one or more aspects of the
present disclosure.

DETAILED DESCRIPTION

Described herein are processing systems and related
methods for enabling external certification of multi-proces-
sor platforms. Applications being executed by an example
processing system and the data accessed by such applica-
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tions may be protected at the micro-architectural level, e.g.,
by implementing secure enclaves, as described in more
details herein below.

In accordance with one or more aspects of the present
disclosure, a processing system may comprise a processing
core coupled to an architecturally protected memory. The
processing core may comprise a control logic configured to
prevent unauthorized access to the architecturally protected
memory. The processing core may further comprise execu-
tion logic configured to implement a secure enclave by
executing instructions accessing data residing in the micro-
architecturally protected memory, as described in more
details herein below.

Each processor may be provisioned with an identity key
during the manufacturing process. The processor identity
key may be stored in a non-volatile read-only memory
comprised by the processor, such as a set of programmable
fuses. For single-processor platforms, the processor’s iden-
tity key may be employed as the platform identity key to be
provided to a certification service, and may also be
employed as the keying material to produce one or more
encryption keys to be used for secure enclave creation.

Hence, for multi-processor platforms, an enclave would
receive different keys depending upon the processor the
enclave is executing on, which may lead to an unrecoverable
error should an active enclave be migrated from one pro-
cessor to another. Also, a multi-processor platform would
need to produce a platform identifier to be presented to a
certification service.

The above noted and other deficiencies are addressed by
one or more aspects of the present disclosure, by providing
a multi-processor platform and a method for producing a
platform manifest comprising the identity keys of the pro-
cessors comprised by the platform and a platform identity
key produced and synchronized by the processors as
described in more details herein below. Various aspects of
the above referenced methods and systems are described in
more details herein below by way of examples, rather than
by way of limitation.

In the following description, numerous specific details are
set forth, such as examples of specific types of processors
and system configurations, specific hardware structures,
specific architectural and micro architectural details, specific
register configurations, specific instruction types, specific
system components, specific measurements/heights, specific
processor pipeline stages and operation in order to provide
a thorough understanding of the present disclosure. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the methods
disclosed herein. In other instances, well known components
or methods, such as specific and alternative processor archi-
tectures, specific logic circuits/code for described algo-
rithms, specific firmware code, specific interconnect opera-
tion, specific logic configurations, specific manufacturing
techniques and materials, specific compiler implementa-
tions, specific expression of algorithms in code, specific
power down and gating techniques/logic and other specific
operational details of computer system have not been
described in detail in order to avoid unnecessarily obscuring
the present disclosure.

Although the following examples are described with
reference to a processor, other implementations are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of examples described
herein can be applied to other types of circuits or semicon-
ductor devices that can benefit from higher pipeline through-
put and improved performance. The teachings of examples
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described herein are applicable to any processor or machine
that performs data manipulations. However, the present
disclosure is not limited to processors or machines that
perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit, or 16 bit data
operations and can be applied to any processor and machine
in which manipulation or management of data is performed.

The examples illustrating the present disclosure and
accompanied drawings should not be construed in a limiting
sense as they are merely intended to provide examples of
embodiments described herein rather than to provide an
exhaustive list of all possible implementations of embodi-
ments described herein. Although the below examples
describe instruction handling and distribution in the context
of execution units and logic circuits, other implementations
of the systems and methods described herein can be accom-
plished by way of a data or instructions stored on a machine-
readable, tangible medium, which when performed by a
machine cause the machine to perform functions consistent
with at least one embodiment described herein. In certain
implementations, functions associated with embodiments
described herein are embodied in machine-executable
instructions. The instructions can be used to cause a general-
purpose or special-purpose processor that is programmed
with the instructions to perform the methods described
herein. Implementations described herein may be provided
as a computer program product or software which may
include a machine or computer-readable medium having
stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform one or
more operations according to embodiments described
herein. Alternatively, operations of systems and methods
described herein may be performed by specific hardware
components that contain fixed-function logic for performing
the operations, or by any combination of programmed
computer components and fixed-function hardware compo-
nents.

Instructions used to program logic to perform the methods
described herein can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer).

“Processor” herein shall refer to a device capable of
executing instructions encoding arithmetic, logical, or /O
operations. In one illustrative example, a processor may
follow Von Neumann architectural model and may include
an arithmetic logic unit (AL U), a control unit, and a plurality
of registers. In a further aspect, a processor may include one
or more processing cores, and hence may be a single core
processor which is typically capable of processing a single
instruction pipeline, or a multi-core processor which may
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simultaneously process multiple instruction pipelines. In
another aspect, a processor may be implemented as a single
integrated circuit, two or more integrated circuits, or may be
a component of a multi-chip module (e.g., in which indi-
vidual microprocessor dies are included in a single inte-
grated circuit package and hence share a single socket).

Referring now to FIG. 1, shown is a block diagram of an
example processing system in accordance with one or more
aspects of the present disclosure. As shown in FIG. 1,
processing system 100 may include one or more processing
cores 111, each processing core 111 having a local first level
(L1) cache 115 associated therewith. [.1 cache 115 may be
communicatively coupled to a shared last level cache (LLC)
120. In an illustrative example, the cache hierarchy com-
prising L1 cache 115 and LLC 120 may be configured as an
inclusive cache hierarchy, such that at least part of the
information stored in L1 cache 115 may also be stored in
LLC 120.

Processing cores 111 in various implementations may be
provided by in-order cores or out-or-order cores. In an
illustrative example, processing core 111 may have a micro-
architecture including processor logic and circuits used to
implement an instruction set architecture (ISA). Processors
with different micro-architectures can share at least a portion
of'a common instruction set. For example, the same register
architecture of the ISA may be implemented in different
ways in different micro-architectures using various tech-
niques, including dedicated physical registers, one or more
dynamically allocated physical registers using a register
renaming mechanism (e.g., the use of a register alias table
(RAT), a reorder buffer (ROB) and a retirement register file),
as illustrated by FIGS. 6-7. In certain implementations,
processing system 100 may also include various other
components not shown in FIG. 1.

In accordance with one or more aspects of the present
disclosure, processing system 100 may comprise an archi-
tecturally protected memory. Processing core 111 may com-
prise processing logic configured to implement a secure
enclave by executing instructions residing in the protected
memory and accessing data residing in the protected
memory, while preventing unauthorized access to the pro-
tected memory even by privileged applications, as described
in more details herein below.

“Secure enclave” herein shall refer to a protected area
within the application’s address space. Access to the enclave
memory from applications not resident in the enclave is
prevented even if such access is attempted by a privileged
application such as BIOS, operating systems or virtual
machine monitors.

An active secure enclave may be divided into an
encrypted portion and a decrypted portion. The encrypted
portion may reside in an unprotected memory (such as main
memory or disk). The decrypted portion resides in the
enclave page cache (EPC) 182. The EPC is a protected
memory used by the processing system to temporarily store
enclave pages when they are not cryptographically pro-
tected. The EPC may be divided into pages of a pre-defined
size, which may be referred to as EPC pages. The EPC is
protected from any accesses by software residing outside the
enclave. Furthermore, unauthorized parties will not be able
to read or modify plain-text data belonging to enclaves that
is loaded into the EPC via straight-forward hardware
attacks. The EPC is located within the physical address
space of the processing system, but can only be accessed
using privileged or non-privileged enclave instructions used
to build and enable an enclave, enter/exit the enclave,
manage EPC, and perform various other operations.
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There are several mechanisms of implementing the EPC.
The EPC may be implemented as on on-die static random
access memory (SRAM) or dynamic random access memory
(DRAM). Alternatively, the EPC may be constructed by
sequestering ways of the CPU’s last-level cache. Another
mechanism of implementing EPC is the Memory Encryption
Engine (MEE). MEE herein shall refer to a hardware-
implemented processing logic that encrypts the traffic
between the processor package and the platform DRAM,
thus providing a mechanism of creating a cryptographically
protected volatile storage using the platform DRAM. MEE
may intercept attempted memory accesses and route those
accesses to a cryptographic controller, which may generate
one or more memory accesses to the platform DRAM to
fetch the cipher-text, processes the cipher-text to generate
the plain-text, and satisfy the original memory access
request.

Referring again to FIG. 1, L1 cache 115 can transfer data
to and from the LL.C 120. Memory controller 150 can be
connected to the last level cache 120 and to MEE 180.
Memory controller 150 can assess EPC 182 residing on
backing storage device 186 within physical address space
188.

The Enclave Page Cache Map (EPCM) is a protected
structure employed by the processing system to track the
contents of the EPC. The EPCM may comprise a plurality of
entries with each entry corresponding to a page in the EPC.
Each EPCM entry may hold, in an implementation-depen-
dent format, the following information: whether the EPC
page is valid or invalid; an identifier of the enclave instance
that owns the page; the type of the page (REG, TCS, VA,
SECS); the virtual address through which the enclave is
allowed to access the page; read/write/execute permissions
for the page; whether the page is accessible or not
(BLOCKED or UNBLOCKED).

The EPCM may be used by the processing system in the
address translation flow to enforce access-control on the
enclave pages loaded into the EPC. Logically it provides an
additional secure layer of access control in addition to
“legacy” segmentation, paging tables and extended paging
tables mechanisms.

The EPC, EPCM, and various other implementation-
specific data structures may be mapped to locations inside
the architecturally protected memory. When a request to
access the EPC is generated, processing system 100 may
remap the request to the backing storage location containing
encrypted EPC data, and retrieve the data.

Various enclave-related functions may be implemented in
the microcode, supported by the hardware implementations
of MEE and the processing logic implementing the enclave
functionality. In certain implementations, the processing
logic may control access to EPC 182 via a translation
lookaside buffer (TLB) 164 and a page miss handler (PMH)
168.

In an illustrative example, a TLB may be implemented as
a table mapping virtual addresses to physical addresses.
“TLB hit” refers to a situation when a requested virtual
address is present in the TLB. “TLB miss” refers to the
opposite situation: when the requested virtual address is not
present in the TLB, the address translation may proceed by
looking up the page table. After the physical address is
determined, the virtual address to physical address mapping
may be entered into the TLB.

Each TLB entry may include one or more bits indicating
identifying the enclave owning the memory location refer-
enced by the TLB entry. Alternatively, if these bits are not
provided, a TLB flush will be needed when exiting the
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6

secure enclave to prevent unauthorized access to the EPC. In
an illustrative example, if a TLB miss occurs, an extra
lookup may fetch data from the EPC map on multiple
memory references. The PMH may perform the look up of
the EPC map.

Processing system 100 may implement a mechanism,
referred to as “attestation,” by which the processing system
may demonstrate to an external entity (e.g., a remote com-
puter system) that a software module has been properly
instantiated on the processing system. In certain implemen-
tations, processing system 100 may produce an identity key
identifying the hardware platform. In an illustrative
example, an application executed within an enclave may
provide the identity key to a certification service. Upon
validating the identity key, the certification service may
issue an attestation key, and may further transmit the attes-
tation key to a provisioning service. A secure enclave
application executed by the processing system may then
transmit its identity key to the provisioning service in order
to retrieve security-sensitive data.

Each processor may be provisioned with an identity key
during the manufacturing process. The processor identity
key may be stored in a non-volatile read-only memory
comprised by the processor, such as a set of programmable
fuses. For single-processor platforms, the processor’s iden-
tity key may be employed as the platform identity key to be
provided to a certification service, and may also be
employed as the keying material to produce one or more
encryption keys to be used for secure enclave creation. In
certain implementations, each secure enclave may request
one or more keys using EGETKEY instruction.

Hence, for multi-processor platforms, an enclave would
receive different keys depending upon the processor the
enclave is executing on, which may lead to an unrecoverable
error should an active enclave be migrated from one pro-
cessor to another. Also, a multi-processor platform would
need to produce a platform identifier to be presented to a
certification service.

In accordance with one or more aspects of the present
disclosure, a multi-processor platform may produce a plat-
form manifest comprising the identity keys of the processors
comprised by the platform and a platform identity key
produced and synchronized by the processors as described in
more details herein below.

An example of the method of producing a platform
manifest is described with references to FIG. 2. The flow
chart of the example method is presented in FIG. 3. As
schematically illustrated by FIG. 2, platform 200 may com-
prise a plurality of processor packages 210. While the below
description refers to two processor packages, the methods
described herein are equally applicable to processing plat-
forms comprising an arbitrary number of processors.

Upon the platform first boot or reset, each of processors
210A-210B may ascertain whether the platform manifest is
stored in a pre-defined location of a non-volatile memory
accessible by the respective processor. Should the platform
manifest be missing or invalid, processors 210 may nego-
tiate long term inter-processor (IPC) communication keys
220 to be used to secure the ensuing inter-processor com-
munications for producing the platform manifest 230. In an
illustrative example, processors 210 may implement a non-
authenticated key negotiation protocol (e.g., Diffie-Hellman
key exchange protocol).

The processors may then establish a protected communi-
cation channel using the negotiated inter-processor commu-
nication key 220, and use the communication channel to
exchange their identity keys and synchronize a set of secu-
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rity properties. The latter may include a platform identity
key 225 and the identifier a certification service to be
employed by the platform. In an illustrative example, the
certification service identifier may comprise a public key of
the certification service.

In certain implementations, platform identity key 225
may be generated by a master processor of the platform. The
latter may be selected by each processor reading a pre-
defined BIOS setting. The master processor may generate a
platform identity key (e.g., by using a random number
generator). In an illustrative example, the platform identity
key may be provided by a 128-bit number. In another
illustrative example, the platform identity key may comprise
one or more symmetric and/or asymmetric keys. The master
processor may further receive an identifier and a public key
of'the certification service 240, e.g., by reading a pre-defined
BIOS setting. The master processor may communicate the
platform identity key and the identifier of the certification
service to other processors of the platform, using the secure
communication channels protected by the long term com-
munication keys that have been negotiated by the platform
processors as described herein above.

Upon synchronizing the security properties with other
processors of the platform, each processor of the platform
may encrypt, using its identity key, a key blob 250 including
the platform identity key and the long term inter-processor
communication keys. In certain implementations, the key
blob may further comprise the certification service identifier.
The processor may store the key blob in a pre-defined
location of a non-volatile memory 255 (e.g., a flash memory
or a hard drive), and may retrieve the key blob upon
subsequent platform boots.

Upon synchronizing the security properties with other
processors of the platform, each processor of the platform
may further create a platform manifest 230, comprising the
platform identity key and the identity keys of the processors
of the platform. Each processor may then encrypt the
manifest with the public key of the certification service, and
transmit the encrypted manifest to the certification service
240.

Certification service 240 may validate the platform by
decrypting and authenticating the received platform mani-
fests and validating each processor’s identity key against an
authoritative data source storing all valid processor identity
keys (e.g., the manufacturer or distributor of the processors).
The certification service may further ascertain that the
manifests have been received from all processors comprised
by the platform, thus preventing processors from attempting
to hide their presence in the platform.

Responsive to successfully validating all processors of the
platform, the certification service may record platform iden-
tity key 225 in a key provisioning database 260 and issue an
attestation key 270. The certification service may further
transmit the platform attestation key to a provisioning ser-
vice 280. A secure enclave application 290 executed by the
processing system 200 may then transmit its platform iden-
tity key 225 to the provisioning service in order to retrieve
security-sensitive data.

In certain implementations, the availability of a commu-
nication channel to an external certification service may only
be required upon a first boot of the platform. Upon subse-
quent boots, each processor may retrieve the key blob stored
in a pre-defined non-volatile memory location, and decrypt
the platform identity key and the long term inter-processor
communication keys. Each processor may then establish
secure communication channels with other processors of the
platform using the long term inter-processor communication
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keys, in order to re-authenticate the other processors of the
platform. Upon ascertaining, by each processor of the plat-
form, that all processors which were present before the last
boot, are still present in the platform, and that no new
processor has been added to the platform, the platform may
declare itself as conforming to the configuration that has
previously been certified by the certification service.

A new processor may be added to the previously certified
platform by transmitting, to the certification service that has
previously certified the platform, a request comprising the
identity key of the newly added processor. Responsive to
validating the newly added processor’s identity key, the
certification service may respond with an approval message.
The newly added processor may store the received approval
message in a pre-defined non-volatile memory location.
Upon the next platform reboot, the newly added processor
may retrieve the approval message from the non-volatile
memory location, and present the approval message to other
processors of the platform in order to exchange long-term
inter-processor communication keys as described in more
details herein above. The newly added processor may then
receive the platform identity key from the existing proces-
sors over a communication channel secured with a long-term
inter-processor communication key.

In certain implementations, allowing processors to be
added and removed to a certified platform may create a
situation when two processors that have previously been
comprised by a common platform, split into their own
platforms, with second processors added to both new plat-
forms. As the first to processors are in possession of the key
blobs comprising the platform identity key of the initial
platform, the latter may become shared by the two new
platforms. The process may repeat, thus potentially leading
to an arbitrary number of platforms sharing the same plat-
form identity key.

To prevent a possible occurrence of the above described
scenario, a chipset may be included in the binding of the
platform. The chipset may establish a unique platform
identifier. Each processor may stores the platform identifier
value in its key blob. Upon reboot, the processor may
request the platform identifier from the chipset, and compare
the received value with the platform identifier retrieved from
the key blob. If the two values match, the key blob belongs
to the current platform. Otherwise, the processor may initi-
ate the platform certification process, as described herein
above.

FIG. 3 depicts a flow diagram of an example method for
producing a platform manifest by a multi-processor plat-
form, in accordance with one or more aspects of the present
disclosure. Method 300 may be performed by a computer
system that may comprise hardware (e.g., circuitry, dedi-
cated logic, and/or programmable logic), software (e.g.,
instructions executable on a computer system to perform
hardware simulation), or a combination thereof. Method 300
and/or each of its functions, routines, subroutines, or opera-
tions may be performed by one or more physical processors
of the computer system executing the method. Two or more
functions, routines, subroutines, or operations of method
300 may be performed in parallel or in an order which may
differ from the order described above. In certain implemen-
tations, method 300 may be performed by a single process-
ing thread. Alternatively, method 300 may be performed by
two or more processing threads, each thread executing one
or more individual functions, routines, subroutines, or
operations of the method. In an illustrative example, the
processing threads implementing method 300 may be syn-
chronized (e.g., using semaphores, critical sections, and/or
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other thread synchronization mechanisms). Alternatively,
the processing threads implementing method 300 may be
executed asynchronously with respect to each other. In one
example, as illustrated by FIG. 3, method 300 may be
performed by the computer systems described herein below
and illustrated by FIGS. 5-11.

Referring to FIG. 3, at block 310, two or more processors
may negotiate inter-processor communication keys to estab-
lish a secure communication channel. In an illustrative
example, the processors may implement an anonymous
(non-authenticated) key negotiation protocol (e.g., Diffie-
Hellman key exchange protocol), as described in more
details herein above.

At block 320, the platform processors may employ the
secure communication channel to exchange their identity
keys and synchronize a set of security properties. The latter
may include a platform identity key and the identifier a
certification service to be employed by the platform.

At block 330, the platform may designate a master
processor. In an illustrative example, the master processor
may be identified by a BIOS setting.

At block 340, the master processor may generate a
platform identity key (e.g., by using a random number
generator). In an illustrative example, the platform identity
key may be provided by a 128-bit number.

At block 350, the master processor may receive an
identifier and a public key of an external certification
service, e.g., by reading a pre-defined BIOS setting.

At block 360, the platform processors may synchronize
platform security properties including the platform identity
key and the certification authority identifier. The master
processor may communicate the platform identity key and
the identifier of the certification service to other processors
of the platform, using the secure communication channels
protected by the long term communication keys that have
been negotiated as described herein above with references to
block 310.

Atblock 370, each platform processor may encrypt, using
its identity key, a key blob including the platform identity
key and the long term inter-processor communication keys.
The processor may store the key blob in a pre-defined
location of a non-volatile memory, as described in more
details herein above.

At block 380, each platform processor may create a
platform manifest comprising the platform identity key and
the identity keys of the processors of the platform.

At block 380, each platform processor may sign the
platform manifest and encrypt it with the public key of the
certification service, and transmit the encrypted manifest to
the certification service for validating, as described in more
details herein above.

FIG. 4 depicts a flow diagram of an example method for
processor cross-authentication in a multi-processor platform
upon second and subsequent platform boots, in accordance
with one or more aspects of the present disclosure. Method
400 may be performed by a computer system that may
comprise hardware (e.g., circuitry, dedicated logic, and/or
programmable logic), software (e.g., instructions executable
on a computer system to perform hardware simulation), or
a combination thereof. Method 400 and/or each of its
functions, routines, subroutines, or operations may be per-
formed by one or more physical processors of the computer
system executing the method. Two or more functions, rou-
tines, subroutines, or operations of method 400 may be
performed in parallel or in an order which may differ from
the order described above. In certain implementations,
method 400 may be performed by a single processing thread.
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Alternatively, method 400 may be performed by two or more
processing threads, each thread executing one or more
individual functions, routines, subroutines, or operations of
the method. In an illustrative example, the processing
threads implementing method 400 may be synchronized
(e.g., using semaphores, critical sections, and/or other thread
synchronization mechanisms). Alternatively, the processing
threads implementing method 400 may be executed asyn-
chronously with respect to each other. In one example, as
illustrated by FIG. 4, method 400 may be performed by the
computer systems described herein below and illustrated by
FIGS. 5-11.

At block 410, upon a platform reboot, each platform
processor may retrieve a key blob that has previously been
stored in a pre-defined non-volatile memory location, as
described in more details herein above.

At block 420, each platform processor may decrypt the
key blob to produce the platform identity key and the long
term inter-processor communication keys.

At block 430, each platform processor may establish
secure communication channels with other processors of the
platform using the long term inter-processor communication
keys, in order to re-authenticate the other processors of the
platform.

At block 440, upon ascertaining, by each processor of the
platform, that all processors which were present before the
last boot, are still present in the platform, and that no new
processor has been added to the platform, the platform may
declare itself as conforming to the configuration that has
previously been certified by the certification service.

Although various systems and methods are described
herein with reference to specific integrated circuits, such as
processors, other implementations may be applicable to
other types of integrated circuits and logic devices. Tech-
niques and teachings of systems and methods described
herein may be applied to other types of circuits or semicon-
ductor devices that may also benefit from better energy
efficiency and energy conservation. For example, the dis-
closed implementations are not limited to any particular type
of computer systems, and may be also used in other devices,
such as handheld devices, systems on chip (SoCs), and
embedded applications. Some examples of handheld devices
include cellular phones, Internet protocol devices, digital
cameras, personal digital assistants (PDAs), and handheld
PCs. Embedded applications may include a microcontroller,
a digital signal processor (DSP), network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or any other system that can perform the
functions and operations taught below. Moreover, the sys-
tems and methods described herein are not limited to physi-
cal computing devices, but may also relate to software-
implemented methods. Power savings realized by systems
and methods described herein may be independent of and
complementary to an operating system (OS)-based mecha-
nism, such as the Advanced Configuration and Platform
Interface (ACPI) standard.

The methods and systems described herein above may be
implemented by computer system of various architectures,
designs and configurations for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable to
implement the methods described herein. In general, a large
variety of systems or electronic devices capable of incorpo-
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rating a processor and/or other execution logic as disclosed
herein are generally suitable for implementing the systems
and methods described herein.

FIG. 5 depicts a high-level component diagram of one
example of a computer system in accordance with one or
more aspects of the present disclosure. A computer system
100 may include two or more processors 110 comprising
processing logic configured to perform method for produc-
ing a platform manifest to enable external platform certifi-
cation, in accordance with the embodiment described herein.
System 100 is representative of processing systems based on
the PENTIUM III™, PENTIUM 4™, Xeon™, Itanium,
XScale™ and/or StrongARM™ microprocessors available
from Intel Corporation of Santa Clara, Calif., although other
systems (including PCs having other microprocessors, engi-
neering workstations, set-top boxes and the like) may also be
used. In one embodiment, sample system 100 executes a
version of the WINDOWS™ operating system available
from Microsoft Corporation of Redmond, Wash., although
other operating systems (UNIX and Linux for example),
embedded software, and/or graphical user interfaces, may
also be used. Thus, embodiments described herein are not
limited to any specific combination of hardware circuitry
and software.

In an illustrative example, processor 110 includes one or
more execution units 108 to implement an algorithm that is
to perform at least one instruction. One embodiment may be
described in the context of a single processor desktop or
server system, but alternative embodiments may be included
in a multiprocessor system. System 100 is an example of a
‘hub’ system architecture. Processor 110, in one illustrative
example, includes a complex instruction set computer
(CISC) microprocessor, a reduced instruction set computing
(RISC) microprocessor, a very long instruction word
(VLIW) microprocessor, a processor implementing a com-
bination of instruction sets, or any other processor device,
such as a digital signal processor, for example. The proces-
sor 110 is coupled to a processor bus 110 that transmits data
signals between the processor 110 and other components in
the system 100. The elements of system 100 (e.g. graphics
accelerator 112, memory controller hub 116, memory 120,
1/O controller hub 124, wireless transceiver 126, Flash BIOS
128, Network controller 134, Audio controller 136, Serial
expansion port 138, I/O controller 140, etc.) perform their
conventional functions that are well known to those familiar
with the art.

In one embodiment, processor 110 includes a Level 1 (L1)
internal cache. Depending on the architecture, processor 110
may have a single internal cache or multiple levels of
internal caches. Other embodiments include a combination
of both internal and external caches depending on the
particular implementation and needs. Register file 106 is to
store different types of data in various registers including
integer registers, floating point registers, vector registers,
banked registers, shadow registers, checkpoint registers,
status registers, and instruction pointer register.

Execution unit 108, including logic to perform integer and
floating point operations, also resides in the processor 110.
The processor 110, in one embodiment, includes a micro-
code (ucode) ROM to store microcode, which when
executed, is to perform algorithms for certain macroinstruc-
tions or handle complex scenarios. Here, microcode is
potentially updateable to handle logic bugs/fixes for proces-
sor 110. For one embodiment, execution unit 108 includes
logic to handle a packed instruction set 109. By including
the packed instruction set 109 in the instruction set of a
general-purpose processor 110, along with associated cir-
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cuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data in a general-purpose processor 110. Thus, many
multimedia applications are accelerated and executed more
efficiently by using the full width of a processor’s data bus
for performing operations on packed data. This potentially
eliminates the need to transfer smaller units of data across
the processor’s data bus to perform one or more operations,
one data element at a time. Alternate embodiments of an
execution unit 108 may also be used in micro controllers,
embedded processors, graphics devices, DSPs, and other
types of logic circuits.

System 100 includes a memory 120. Memory 120
includes a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device,
flash memory device, or other memory device. Memory 120
stores instructions 129 and/or data 123 represented by data
signals that are to be executed by the processor 110. In
certain implementations, instructions 129 may include
instructions employing the secure enclave execution logic,
as described in more details herein above.

A system logic chip 116 is coupled to the processor bus
110 and memory 120. The system logic chip 116 in the
illustrated embodiment is a memory controller hub (MCH).
The processor 110 can communicate to the MCH 116 via a
processor bus 110. The MCH 116 provides a high bandwidth
memory path 118 to memory 120 for instruction and data
storage and for storage of graphics commands, data and
textures. The MCH 116 is to direct data signals between the
processor 110, memory 120, and other components in the
system 100 and to bridge the data signals between processor
bus 110, memory 120, and system [/O 122. In some embodi-
ments, the system logic chip 116 can provide a graphics port
for coupling to a graphics controller 112. The MCH 116 is
coupled to memory 120 through a memory interface 118.
The graphics card 112 is coupled to the MCH 116 through
an Accelerated Graphics Port (AGP) interconnect 114.

System 100 uses a proprietary hub interface bus 122 to
couple the MCH 116 to the I/O controller hub (ICH) 130.
The ICH 130 provides direct connections to some [/O
devices via a local 1/0 bus. The local /O bus is a high-speed
1/O bus for connecting peripherals to the memory 120,
chipset, and processor 110. Some examples are the audio
controller, firmware hub (flash BIOS) 128, wireless trans-
ceiver 126, data storage 124, legacy /O controller contain-
ing user input and keyboard interfaces, a serial expansion
port such as Universal Serial Bus (USB), and a network
controller 134. The data storage device 124 can comprise a
hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

For another embodiment of a system, an instruction in
accordance with one embodiment can be used with a system
on a chip. One embodiment of a system on a chip comprises
of a processor and a memory. The memory for one such
system is a flash memory. The flash memory can be located
on the same die as the processor and other system compo-
nents. Additionally, other logic blocks such as a memory
controller or graphics controller can also be located on a
system on a chip.

FIG. 6 is a block diagram of the micro-architecture for a
processor 200 that includes logic circuits to perform instruc-
tions in accordance with one or more aspects of the present
disclosure. In some embodiments, an instruction in accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision integer and floating point datatypes. In one
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embodiment the in-order front end 201 is the part of the
processor 200 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline. The
front end 201 may include several units. In one embodiment,
the instruction prefetcher 226 fetches instructions from
memory and feeds them to an instruction decoder 228 which
in turn decodes or interprets them. For example, in one
embodiment, the decoder decodes a received instruction into
one or more operations called “micro-instructions” or
“micro-operations” (also referred to as uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 230 takes decoded uops
and assembles them into program ordered sequences or
traces in the uop queue 234 for execution. When the trace
cache 230 encounters a complex instruction, the microcode
ROM 232 provides the vops needed to complete the opera-
tion.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 228
accesses the microcode ROM 232 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 228. In another embodiment, an instruction can be
stored within the microcode ROM 232 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 230 refers to an entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 232. After the microcode ROM 232
finishes sequencing micro-ops for an instruction, the front
end 201 of the machine resumes fetching micro-ops from the
trace cache 230.

The out-of-order execution engine 203 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The
register aliasing logic maps logical registers onto entries in
a register file. The allocator also allocates an entry for each
uop in one of the two uop queues, one for memory opera-
tions and one for non-memory operations, in front of the
instruction schedulers: memory scheduler, fast scheduler
202, slow/general floating point scheduler 204, and simple
floating point scheduler 206. The uop schedulers 202, 204,
206 determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 202 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can schedule once per main
processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule vops for execution.

Physical register files 208, 210 sit between the schedulers
202, 204, 206, and the execution units 212, 214, 216, 218,
220, 222, 224 in the execution block 211. There is a separate
register file 208, 210 for integer and floating point opera-
tions, respectively. Each register file 208, 210, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
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written into the register file to new dependent uops. The
integer register file 208 and the floating point register file
210 are also capable of communicating data with the other.
For one embodiment, the integer register file 208 is split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 210 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

The execution block 211 contains the execution units 212,
214, 216, 218, 220, 222, 224, where the instructions are
actually executed. This section includes the register files
208, 210, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 200 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
212, AGU 214, fast ALU 216, fast ALU 218, slow ALU 220,
floating point ALU 222, floating point move unit 224. For
one embodiment, the floating point execution blocks 222,
224, execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALLU 222 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For systems
and methods described herein, instructions involving a float-
ing point value may be handled with the floating point
hardware. In one embodiment, the ALU operations go to the
high-speed ALU execution units 216, 218. The fast ALUs
216, 218, of one embodiment can execute fast operations
with an effective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the
slow ALU 220 as the slow ALU 220 includes integer
execution hardware for long latency type of operations, such
as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations are executed by the AGUs
212, 214. For one embodiment, the integer ALUs 216, 218,
220 are described in the context of performing integer
operations on 64 bit data operands. In alternative embodi-
ments, the ALUs 216, 218, 220 can be implemented to
support a variety of data bits including 16, 32, 128, 256, etc.
Similarly, the floating point units 222, 224 can be imple-
mented to support a range of operands having bits of various
widths. For one embodiment, the floating point units 222,
224 can operate on 128 bits wide packed data operands in
conjunction with SIMD and multimedia instructions.

In one embodiment, the uops schedulers 202, 204, 206
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 200, the processor 200 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. The dependent opera-
tions should be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
instruction sequences for text string comparison operations.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identify operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited in meaning to a particular
type of circuit. Rather, a register of an embodiment is
capable of storing and providing data, and performing the
functions described herein. The registers described herein
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can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register aliasing, combinations of dedicated and dynamically
allocated physical registers, etc. In one embodiment, integer
registers store thirty-two bit integer data. A register file of
one embodiment also contains eight multimedia SIMD
registers for packed data. For the discussions below, the
registers are understood to be data registers designed to hold
packed data, such as 64 bits wide MMX registers (also
referred to as ‘mm’ registers in some instances) in micro-
processors enabled with the MMX™ technology from Intel
Corporation of Santa Clara, Calif. These MMX registers,
available in both integer and floating point forms, can
operate with packed data elements that accompany SIMD
and SSE instructions. Similarly, 128 bits wide XMM regis-
ters relating to SSE2, SSE3, SSE4, or beyond (referred to
generically as “SSEx”) technology can also be used to hold
such packed data operands. In one embodiment, in storing
packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodi-
ment, integer and floating point are either contained in the
same register file or different register files. Furthermore, in
one embodiment, floating point and integer data may be
stored in different registers or the same registers.

FIGS. 7a-7b schematically illustrates elements of a pro-
cessor micro-architecture, in accordance with one or more
aspects of the present disclosure. In FIG. 7a, a processor
pipeline 400 includes a fetch stage 402, a length decode
stage 404, a decode stage 406, an allocation stage 408, a
renaming stage 410, a scheduling (also known as a dispatch
or issue) stage 412, a register read/memory read stage 414,
an execute stage 416, a write back/memory write stage 418,
an exception handling stage 422, and a commit stage 424.

In FIG. 75, arrows denote a coupling between two or more
units and the direction of the arrow indicates a direction of
data flow between those units. FIG. 756 shows processor core
111 including a front end unit 430 coupled to an execution
engine unit 450, and both are coupled to a memory unit 470.

The core 111 may be a reduced instruction set computing
(RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid
or alternative core type. As yet another option, the core 111
may be a special-purpose core, such as, for example, a
network or communication core, compression engine,
graphics core, or the like.

The front end unit 430 includes a branch prediction unit
432 coupled to an instruction cache unit 434, which is
coupled to an instruction translation lookaside buffer (TLB)
436, which is coupled to an instruction fetch unit 438, which
is coupled to a decode unit 440. The decode unit or decoder
may decode instructions, and generate as an output one or
more micro-operations, micro-code entry points, microin-
structions, other instructions, or other control signals, which
are decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decoder may be imple-
mented using various different mechanisms. Examples of
suitable mechanisms include, but are not limited to, look-up
tables, hardware implementations, programmable logic
arrays (PLAs), microcode read only memories (ROMs), etc.
The instruction cache unit 434 is further coupled to a level
2 (L2) cache unit 476 in the memory unit 470. The decode
unit 440 is coupled to a rename/allocator unit 452 in the
execution engine unit 450.

The execution engine unit 450 includes the rename/
allocator unit 452 coupled to a retirement unit 454 and a set
of one or more scheduler unit(s) 456. The scheduler unit(s)
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456 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 456 is coupled to the physical register
file(s) unit(s) 458. Each of the physical register file(s) units
458 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. The physical register
file(s) unit(s) 458 is overlapped by the retirement unit 454 to
illustrate various ways in which register aliasing and out-
of-order execution may be implemented (e.g., using a reor-
der buffer(s) and a retirement register file(s), using a future
file(s), a history buffer(s), and a retirement register file(s);
using a register maps and a pool of registers; etc.). Gener-
ally, the architectural registers are visible from the outside of
the processor or from a programmer’s perspective. The
registers are not limited to any known particular type of
circuit. Various different types of registers are suitable as
long as they are capable of storing and providing data as
described herein. Examples of suitable registers include, but
are not limited to, dedicated physical registers, dynamically
allocated physical registers using register aliasing, combi-
nations of dedicated and dynamically allocated physical
registers, etc. The retirement unit 454 and the physical
register file(s) unit(s) 458 are coupled to the execution
cluster(s) 460. The execution cluster(s) 460 includes a set of
one or more execution units 162 and a set of one or more
memory access Units 464. The execution units 462 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 456,
physical register file(s) unit(s) 458, and execution cluster(s)
460 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar
floating point/packed integer/packed floating point/vector
integer/vector floating point pipeline, and/or a memory
access pipeline that each have their own scheduler unit,
physical register file(s) unit, and/or execution cluster—and
in the case of a separate memory access pipeline, certain
embodiments are implemented in which the execution clus-
ter of this pipeline has the memory access unit(s) 464). It
should also be understood that where separate pipelines are
used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

The set of memory access units 464 is coupled to the
memory unit 470, which includes a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (L2)
cache unit 476. In one exemplary embodiment, the memory
access units 464 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 472 in the memory unit 470. The [.2 cache
unit 476 is coupled to one or more other levels of cache and
eventually to a main memory.

By way of example, the exemplary register aliasing,
out-of-order issue/execution core architecture may imple-
ment the pipeline 400 as follows: the instruction fetch 438
performs the fetch and length decoding stages 402 and 404;
the decode unit 440 performs the decode stage 406; the
rename/allocator unit 452 performs the allocation stage 408
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and renaming stage 410; the scheduler unit(s) 456 performs
the schedule stage 412; the physical register file(s) unit(s)
458 and the memory unit 470 perform the register read/
memory read stage 414; the execution cluster 460 perform
the execute stage 416; the memory unit 470 and the physical
register file(s) unit(s) 458 perform the write back/memory
write stage 418; various units may be involved in the
exception handling stage 422; and the retirement unit 454
and the physical register file(s) unit(s) 458 perform the
commit stage 424.

The core 111 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with additional extensions such as NEON) of
ARM Holdings of Sunnyvale, Calif.).

In certain implementations, the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register aliasing is described in the context of
out-of-order execution, it should be understood that register
aliasing may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate instruction and data cache units 434/474 and a
shared [.2 cache unit 476, alternative embodiments may
have a single internal cache for both instructions and data,
such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

In certain implementations, processor core 111 may be
designed as an out-of-order (OOO) core in order to improve
the performance by executing instructions as soon as their
operands become available, rather than in the program order.
However, the performance benefit may be offset by a con-
siderable increase in the power consumption. When multiple
execution threads are available for the operating system to
schedule, employing multiple in-order cores rather than
large OOO cores may improve the energy consumption
profile of the processor without compromising the overall
performance. Thus, to improve the performance and energy
consumption scalability of a processor, the latter may be
designed to support a variable number of cores depending on
the performance needs and the number of threads available
to the operating system for scheduling.

FIG. 8 depicts a block diagram of an example computer
system, in accordance with one or more aspects of the
present disclosure. As shown in FIG. 8, multiprocessor
system 700 is a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of processing
system 100 capable of performing secure delivery of output
surface bitmaps to a display engine, as described in more
details herein above. While shown with only two processors
770, 780, it is to be understood that the scope of the present
disclosure is not so limited. In other embodiments, one or
more additional processors may be present in the example
computer system.
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Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIG. 8, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present disclo-
sure is not so limited.

As shown in FIG. 8, various [/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio /O 724 may be coupled to second bus 720.

FIG. 9 depicts a block diagram of an example system on
a chip (SoC), in accordance with one or more aspects of the
present disclosure. The application processor 910 provided
by some version of processing system 100 capable of
performing secure delivery of surface bitmaps to a display
engine, as described in more details herein above. As
schematically illustrated by FIG. 9, interconnect unit(s) 902
may be coupled to: an application processor 910 which
includes a set of one or more cores 902A-N and shared cache
unit(s) 906; a system agent unit 910; a bus controller unit(s)
916; an integrated memory controller unit(s) 914; a set or
one or more media processors 920 which may include
integrated graphics logic 908, an image processor 924 for
providing still and/or video camera functionality, an audio
processor 926 for providing hardware audio acceleration,
and a video processor 928 for providing video encode/
decode acceleration; an static random access memory
(SRAM) unit 930; a direct memory access (DMA) unit 932;
and a display unit 940 for coupling to one or more external
displays.

FIG. 10 depicts a block diagram of an example computer
system, in accordance with one or more aspects of the
present disclosure. Processor 1610 may be provided by
some version of processing system 100 capable of perform-
ing secure delivery of surface bitmaps to a display engine,
as described in more details herein above.

The system 1600 schematically illustrated by FIG. 10
may include any combination of components implemented
as ICs, portions thereof, discrete electronic devices, or other
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modules, logic, hardware, software, firmware, or a combi-
nation thereof adapted in a computer system, or as compo-
nents otherwise incorporated within a chassis of the com-
puter system. The block diagram of FIG. 10 is intended to
show a high level view of many components of the computer
system. However, it is to be understood that some of the
components shown may be omitted, additional components
may be present, and different arrangement of the compo-
nents shown may occur in other implementations.

Processor 1610 may be provided by a microprocessor,
multi-core processor, multithreaded processor, an ultra low
voltage processor, an embedded processor, or other known
processing element. In the illustrated implementation, pro-
cessor 1610 acts as a main processing unit and central hub
for communication with many of the various components of
the system 1600. As one example, processor 1600 may be
implemented as a system on a chip (SoC). As a specific
illustrative example, processor 1610 includes an Intel®
Architecture Core™-based processor such as an i3, i5, i7 or
another such processor available from Intel Corporation,
Santa Clara, Calif.

Processor 1610 may communicate with a system memory
1615. In various implementations the individual memory
devices may be of different package types such as single die
package (SDP), dual die package (DDP) or quad die package
(1P). These devices, in some implementations, may be
directly soldered onto a motherboard to provide a lower
profile solution, while in other implementations the devices
may be configured as one or more memory modules that in
turn couple to the motherboard by a given connector. Other
memory implementations are possible, such as other types
of memory modules, e.g., dual inline memory modules
(DIMMs) of different varieties including but not limited to
microDIMMs, MiniDIMMs. In one illustrative example, the
memory may be sized between 2 GB and 16 GB, and may
be configured as a DDR3LM package or an LPDDR2 or
LPDDR3 memory that is soldered onto a motherboard via a
ball grid array (BGA).

To provide for persistent storage of information such as
data, applications, one or more operating systems and so
forth, a mass storage 1620 may be also coupled to processor
1610. In certain implementations, to enable a thinner and
lighter system design as well as to improve system respon-
siveness, the mass storage 1620 may be implemented via a
SSD. In other implementations, the mass storage may pri-
marily be provided by a hard disk drive (HDD) with a
smaller amount of SSD storage to act as a SSD cache to
enable non-volatile storage of context state and other such
information during power down events so that a fast power
up can occur on re-initiation of system activities.

Also shown in FIG. 10, a flash device 1622 may be
coupled to processor 1610, e.g., via a serial peripheral
interface (SPI). The flash device 1622 may provide for
non-volatile storage of system software, including a basic
input/output software (BIOS) as well as other firmware of
the system.

In various implementations, the mass storage of the
system may be provided by a SSD alone or as a disk, optical
or other drive with an SSD cache. In some implementations,
the mass storage may be provided by an SSD or as a HDD
along with a restore (RST) cache module. The SSD cache
may be configured as a single level cache (SLC) or multi-
level cache (MLC) option to provide an appropriate level of
responsiveness.

Various input/output (IO) devices may be present within
system 1600, including, e.g., a display 1624 which may be
provided by a high definition LCD or LED panel configured
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within a lid portion of the chassis. This display panel may
also provide for a touch screen 1625 adapted externally over
the display panel such that via a user’s interaction with this
touch screen, user inputs can be provided to the system to
enable desired operations, e.g., with regard to the display of
information, accessing of information and so forth. In cer-
tain implementations, display 1624 may be coupled to
processor 1610 via a display interconnect that can be imple-
mented as a high performance graphics interconnect. Touch
screen 1625 may be coupled to processor 1610 via another
interconnect, which in an embodiment can be an 12C inter-
connect. In addition to touch screen 1625, user input by way
of touch can also occur via a touch pad 1630 which may be
configured within the chassis and may also be coupled to the
same I12C interconnect as touch screen 1625.

Various sensors may be present within the system and
may be coupled to processor 1610 in different manners.
Certain inertial and environmental sensors may couple to
processor 1610 through a sensor hub 1640, e.g., via an 12C
interconnect. These sensors may include an accelerometer
1641, an ambient light sensor (ALS) 1642, a compass 1643
and a gyroscope 1644. Other environmental sensors may
include one or more thermal sensors 1646 which in some
embodiments couple to processor 1610 via a system man-
agement bus (SMBus) bus. In certain implementations, one
or more infrared or other heat sensing elements, or any other
element for sensing the presence or movement of a user may
be present.

Various peripheral devices may couple to processor 1610
via a low pin count (LPC) interconnect. In certain imple-
mentations, various components can be coupled through an
embedded controller 1635. Such components can include a
keyboard 1636 (e.g., coupled via a PS2 interface), a fan
1637, and a thermal sensor 1639. In some embodiments,
touch pad 1630 may also couple to EC 1635 via a PS2
interface. In addition, a security processor such as a trusted
platform module (TPM) 1638 in accordance with the
Trusted Computing Group (TCG) TPM Specification Ver-
sion 1.2, dated Oct. 2, 2003, may also couple to processor
1610 via this LPC interconnect.

In certain implementations, peripheral ports may include
a high definition media interface (HDMI) connector (which
can be of different form factors such as full size, mini or
micro); one or more USB ports, such as full-size external
ports in accordance with the Universal Serial Bus Revision
3.0 Specification (November 2008), with at least one pow-
ered for charging of USB devices (such as smartphones)
when the system is in Connected Standby state and is
plugged into AC wall power. In addition, one or more
Thunderbolt™ ports can be provided. Other ports may
include an externally accessible card reader such as a full
size SD-XC card reader and/or a SIM card reader for
WWAN (e.g., an 8 pin card reader). For audio, a 3.5 mm jack
with stereo sound and microphone capability (e.g., combi-
nation functionality) can be present, with support for jack
detection (e.g., headphone only support using microphone in
the lid or headphone with microphone in cable). In some
embodiments, this jack can be re-taskable between stereo
headphone and stereo microphone input. Also, a power jack
can be provided for coupling to an AC brick.

System 1600 can communicate with external devices in a
variety of manners, including wirelessly. In the embodiment
shown in FIG. 16, various wireless modules, each of which
can correspond to a radio configured for a particular wireless
communication protocol, are present. One manner for wire-
less communication in a short range such as a near field may
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be via a near field communication (NFC) unit 1645 which
may communicate, in one embodiment with processor 1610
via an SMBus.

Additional wireless units can include other short range
wireless engines including a WLAN unit 1650 and a Blu-
etooth unit 1652. Using WLAN unit 1650, WiFi™ commu-
nications in accordance with a given Institute of Electrical
and Flectronics Engineers (IEEE) 802.11 standard can be
realized, while via Bluetooth unit 1652, short range com-
munications via a Bluetooth protocol can occur. These units
may communicate with processor 1610 via, e.g., a USB link
or a universal asynchronous receiver transmitter (UART)
link. Or these units may couple to processor 1610 via an
interconnect according to a Peripheral Component Intercon-
nect Express™ (PCle™) protocol, e.g., in accordance with
the PCI Express™ Specification Base Specification version
3.0 (published Jan. 17, 2007), or another such protocol such
as a serial data input/output (SDIO) standard. Of course, the
actual physical connection between these peripheral devices,
which may be configured on one or more add-in cards, can
be by way of the NGFF connectors adapted to a mother-
board.

In addition, wireless wide area communications, e.g.,
according to a cellular or other wireless wide area protocol,
can occur via a WWAN unit 1656 which in turn may couple
to a subscriber identity module (SIM) 1657. In addition, to
enable receipt and use of location information, a GPS
module 1655 may also be present.

To provide for audio inputs and outputs, an audio pro-
cessor can be implemented via a digital signal processor
(DSP) 1660, which may couple to processor 1610 via a high
definition audio (HDA) link. Similarly, DSP 1660 may
communicate with an integrated coder/decoder (CODEC)
and amplifier 1662 that in turn may couple to output
speakers 1663 which may be implemented within the chas-
sis. Similarly, amplifier and CODEC 1662 can be coupled to
receive audio inputs from a microphone 1665.

FIG. 11 depicts a block diagram of an example system on
a chip (SoC), in accordance with one or more aspects of the
present disclosure. As a specific illustrative example, SOC
1700 may be included in user equipment (UE). In one
embodiment, UE refers to any device to be used by an
end-user to communicate, such as a hand-held phone, smart-
phone, tablet, ultra-thin notebook, notebook with broadband
adapter, or any other similar communication device. Often a
UE connects to a base station or node, which potentially
corresponds in nature to a mobile station (MS) in a GSM
network.

As schematically illustrated by FIG. 11, SOC 1700 may
include two cores. Cores 1706 and 1707 may be coupled to
cache control 1708 that is associated with bus interface unit
1709 and [.2 cache 1710 to communicate with other parts of
system 1700. Interconnect 1710 may include an on-chip
interconnect, such as an IOSF, AMBA, or other intercon-
nect.

Interface 1710 may provide communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1730 to interface with a SIM card, a boot ROM 1735
to hold boot code for execution by cores 1706 and 1707 to
initialize and boot SOC 1700, a SDRAM controller 1740 to
interface with external memory (e.g., DRAM 1760), a flash
controller 1745 to interface with non-volatile memory (e.g.,
flash 1765), a peripheral control 1550 (e.g., Serial Peripheral
Interface) to interface with peripherals, video codecs 1720
and Video interface 1725 to display and receive input (e.g.,
touch enabled input), GPU 1715 to perform graphics related
computations, etc. In addition, the system may comprise
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peripherals for communication, such as a Bluetooth module
1770, 3G modem 1775, GPS 1785, and WiFi 1785.

Other computer system designs and configurations may
also be suitable to implement the systems and methods
described herein. The following examples illustrate various
implementations in accordance with one or more aspects of
the present disclosure.

Example 1 is a processing system, comprising: an archi-
tecturally protected memory; and a plurality of processing
devices communicatively coupled to the architecturally pro-
tected memory, each processing device comprising a first
processing logic configured to implement an architecturally-
protected execution environment by performing at least one
of: executing instructions residing in the architecturally
protected memory or preventing an unauthorized access to
the architecturally protected memory; wherein each process-
ing device further comprises a second processing logic
configured to establish a secure communication channel
with a second processing device of the processing system,
employ the secure communication channel to synchronize a
platform identity key representing the processing system,
and transmit a platform manifest comprising the platform
identity key to a certification system.

In Example 2, the architecturally protected memory ofthe
processing system of Example 1 may be provided by an
enclave page cache (EPC).

In Example 3, the first processing logic of the processing
system of Example 1 may be configured to implement a
secure enclave execution environment.

In Example 4, the second processing logic of the process-
ing system of Example 1 may be configured to transmit the
platform identity key to a provisioning system.

In Example 5, the second processing logic of the process-
ing system of Example 1 may be configured to store the
platform manifest in a non-volatile memory.

In Example 6, the operation of synchronizing the platform
identity key of the processing system of Example 1 may
comprise exchanging processor identity keys with the sec-
ond processing device.

In Example 7, the second processing logic of the process-
ing system of Example 1 may be configured to store, in a
non-volatile memory, a key blob including the platform
identity key and identity keys of the plurality of processing
devices.

Example 8 is a method, comprising: establishing, by a
first processing device of a processing system, a secure
communication channel with a second processing device of
the processing system; synchronizing, over the secure com-
munication channel, a platform identity key representing the
processing system, and transmitting a platform manifest
comprising the platform identity key to a certification sys-
tem.

In Example 9, the method of Example 8 may further
comprise transmitting the platform manifest to a provision-
ing system.

In Example 10, the method of Example 8 may further
comprise storing the platform manifest in a non-volatile
memory.

In Example 11, the operation of establishing the secure
communication channel of the method of Example 8 may
comprise implementing a non-authenticated key negotiation
protocol.

In Example 12, the operation of synchronizing the plat-
form identity key of the method of Example 8 may comprise
exchanging processor identity keys with the second process-
ing device.
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In Example 13, the operation of synchronizing the plat-
form identity key of the method of Example 8 may comprise
designating the first processing device as a master processor.

In Example 14, the method of Example 13 may further
comprise generating the platform identity key by the master
processor.

In Example 15, the method of Example 8 may further
comprise storing, in a non-volatile memory, a key blob
including the platform identity key and identity keys of two
or more processing devices comprised by the processing
system.

In Example 16, the method of Example 15 may further
comprise retrieving, upon detecting a reboot of the process-
ing system, the key bob from the non-volatile memory.

In Example 17, the method of Example 8 may further
comprise transmitting a request to the certification system to
add a third processing device to the processing system.

Example 18 is an apparatus comprising: a memory and a
processing system coupled to the memory, the processing
system being configured to perform the method of any of the
Examples 8-17.

Example 19 is a computer-readable non-transitory storage
medium comprising executable instructions that, when
executed by a processing system, cause the processing
system to perform operations, comprising: establishing, by a
first processing device of the processing system, a secure
communication channel with a second processing device of
the processing system; synchronizing, over the secure com-
munication channel, a platform identity key representing the
processing system, and transmitting a platform manifest
comprising the platform identity key to a certification sys-
tem.

In Example 20, the computer-readable non-transitory
storage medium of Example 19 may further comprise
executable instructions causing the processing system to
transmit the platform manifest to a provisioning system.

In Example 21, the computer-readable non-transitory
storage medium of Example 19 may further comprise
executable instructions causing the processing system to
store the platform manifest in a non-volatile memory.

In example 22, the operation of establishing the secure
communication channel, encoded by the computer-readable
non-transitory storage medium of Example 19, may com-
prise implementing a non-authenticated key negotiation
protocol.

In example 23, the operation of synchronizing the plat-
form identity key, encoded by the computer-readable non-
transitory storage medium of Example 19, may comprise
exchanging processor identity keys with the second process-
ing device.

In example 24, the operation of synchronizing the plat-
form identity key, encoded by the computer-readable non-
transitory storage medium of Example 19, may comprise
designating the first processing device as a master processor.

In Example 25, the computer-readable non-transitory
storage medium of Example 24 may further comprise
executable instructions causing the processing system to
generate the platform identity key by the master processor.

In Example 26, the computer-readable non-transitory
storage medium of Example 19 may further comprise
executable instructions causing the processing system to
store, in a non-volatile memory, a key blob including the
platform identity key and identity keys of two or more
processing devices comprised by the processing system.

In Example 27, the computer-readable non-transitory
storage medium of Example 19 may further comprise
executable instructions causing the processing system to

30

40

45

50

55

24

retrieve, upon detecting a reboot of the processing system,
the key bob from the non-volatile memory.

In Example 28, the computer-readable non-transitory
storage medium of Example 19 may further comprise
executable instructions causing the processing system to
transmit a request to the certification system to add a third
processing device to the processing system.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled in the data processing arts to most effec-
tively convey the substance of their work to others skilled in
the art. An algorithm is here and generally, conceived to be
a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared and otherwise manipulated. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “encrypting,” “decrypting,” “storing,” “providing,”
“deriving,” “obtaining,” “receiving,” “authenticating,”
“deleting,” “executing,” “requesting,” “communicating,” or
the like, refer to the actions and processes of a computing
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (e.g.,
electronic) quantities within the computing system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computing system memories
or registers or other such information storage, transmission
or display devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, instance or illustration. Any
aspect or design described herein as “example’ or “exem-
plary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of
the words “example” or “exemplary” is intended to present
concepts in a concrete fashion. As used in this application,
the term “or” is intended to mean an inclusive “or” rather
than an exclusive “or.” That is, unless specified otherwise, or
clear from context, “X includes A or B” is intended to mean
any of the natural inclusive permutations. That is, if X
includes A; X includes B; or X includes both A and B, then
“X includes A or B” is satisfied under any of the foregoing
instances. In addition, the articles “a” and “an” as used in
this application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.
Moreover, use of the term “an embodiment” or “one
embodiment” or “an implementation” or “one implementa-
tion” throughout is not intended to mean the same embodi-
ment or implementation unless described as such. Also, the
terms “first,” “second,” “third,” “fourth,” etc. as used herein
are meant as labels to distinguish among different elements
and may not necessarily have an ordinal meaning according
to their numerical designation.

Embodiments descried herein may also relate to an appa-
ratus for performing the operations herein. This apparatus
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may be specially constructed for the required purposes, or it
may comprise a general-purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a
non-transitory computer-readable storage medium, such as,
but not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs and magnetic-optical disks, read-
only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic or optical cards, flash
memory, or any type of media suitable for storing electronic
instructions. The term “computer-readable storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database and/or
associated caches and servers) that store the one or more sets
of instructions. The term “computer-readable medium” shall
also be taken to include any medium that is capable of
storing, encoding or carrying a set of instructions for execu-
tion by the machine and that causes the machine to perform
any one or more of the methodologies of the present
embodiments. The term “computer-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, optical media, magnetic
media, any medium that is capable of storing a set of
instructions for execution by the machine and that causes the
machine to perform any one or more of the methodologies
of the present embodiments.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the required method operations. The required
structure for a variety of these systems will appear from the
description below. In addition, the present embodiments are
not described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the embodiments as described herein.

The above description sets forth numerous specific details
such as examples of specific systems, components, methods
and so forth, in order to provide a good understanding of
several embodiments. It will be apparent to one skilled in the
art, however, that at least some embodiments may be prac-
ticed without these specific details. In other instances, well-
known components or methods are not described in detail or
are presented in simple block diagram format in order to
avoid unnecessarily obscuring the present embodiments.
Thus, the specific details set forth above are merely exem-
plary. Particular implementations may vary from these
exemplary details and still be contemplated to be within the
scope of the present embodiments.

It is to be understood that the above description is
intended to be illustrative and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description. The
scope of the present embodiments should, therefore, be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.

The invention claimed is:

1. A processing system, comprising:

an architecturally protected memory represented by an

enclave page cache (EPC); and

a plurality of processing devices communicatively

coupled to the architecturally protected memory,
wherein a first processing device of the processing
system is to:
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establish, using the architecturally-protected memory, a
secure communication channel with a second process-
ing device of the processing system,

employ the secure communication channel to synchronize
a platform identity key representing the processing
system,

transmit to a certification system a platform manifest
comprising the platform identity key and a plurality of
processor identity keys and

transmit, to the certification system, a request to add a
third processing device to the processing system.

2. The processing system of claim 1, wherein the first
processing device is further to implement a secure enclave
execution environment.

3. The processing system of claim 1, wherein the first
processing device is further to transmit the platform identity
key to a provisioning system.

4. The processing system of claim 1, wherein the first
processing device is further to store the platform manifest in
a non-volatile memory.

5. The processing system of claim 1, wherein synchro-
nizing the platform identity key comprises exchanging pro-
cessor identity keys with the second processing device.

6. The processing system of claim 1, wherein the first
processing device is further to store, in a non-volatile
memory, a key blob including the platform identity key and
identity keys of the plurality of processing devices.

7. A method, comprising:

implementing, by a first processing device of a processing
system, a secure enclave execution environment;

establishing, using the secure enclave execution environ-
ment, a secure communication channel with a second
processing device of the processing system;

synchronizing, over the secure communication channel, a
platform identity key representing the processing sys-
tem;

transmitting, to a certification system, a platform manifest
comprising the platform identity key and a processor
identity key; and

transmitting, to the certification system, a request to add
a third processing device to the processing system.

8. The method of claim 7, further comprising transmitting

the platform manifest to a provisioning system.

9. The method of claim 7, further comprising storing the
platform manifest in a non-volatile memory.

10. The method of claim 7, wherein establishing the
secure communication channel comprises implementing a
non-authenticated key negotiation protocol.

11. The method of claim 7, wherein synchronizing the
platform identity key comprises exchanging processor iden-
tity keys with the second processing device.

12. The method of claim 7, wherein synchronizing the
platform identity key comprises designating the first pro-
cessing device as a master processor.

13. The method of claim 12, further comprising generat-
ing the platform identity key by the master processor.

14. The method of claim 7, further comprising:

storing, in a non-volatile memory, a key blob including
the platform identity key and identity keys of two or
more processing devices comprised by the processing
system.

15. The method of claim 14, further comprising:

retrieving, upon detecting a reboot of the processing
system, the key blob from the non-volatile memory.
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16. A computer-readable non-transitory storage medium
comprising executable instructions that, when executed by a
processing system, cause the processing system to perform
operations, comprising:

implementing, by a first processing device of the process-

ing system, a secure enclave execution environment;
establishing, using the secure enclave execution environ-

ment, a secure communication channel with a second

processing device of the processing system;

synchronizing, over the secure communication channel, a

platform identity key representing the processing sys-
tem;

transmitting, to a certification system, a platform manifest

comprising the platform identity key and a processor
identity key; and

transmitting, to the certification system, a request to add

a third processing device to the processing system.

17. The computer-readable non-transitory storage
medium of claim 16, further comprising executable instruc-
tions to cause the processing system to transmit the platform
manifest to a provisioning system.

18. The computer-readable non-transitory storage
medium of claim 16, further comprising executable instruc-
tions to cause the processing system to store the platform
manifest in a non-volatile memory.
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19. The computer-readable non-transitory storage
medium of claim 16, wherein establishing the secure com-
munication channel comprises implementing a non-authen-
ticated key negotiation protocol.

20. The computer-readable non-transitory storage
medium of claim 16, wherein synchronizing the platform
identity key comprises exchanging processor identity keys
with the second processing device.

21. The computer-readable non-transitory storage
medium of claim 16, wherein synchronizing the platform
identity key comprises designating the first processing
device as a master processor.

22. The computer-readable non-transitory storage
medium of claim 21, further comprising executable instruc-
tions to cause the processing system to generate the platform
identity key by the master processor.

23. The computer-readable non-transitory storage
medium of claim 16, further comprising executable instruc-
tions to cause the processing system to store, in a non-
volatile memory, a key blob including the platform identity
key and identity keys of two or more processing devices
comprised by the processing system.
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